Robust learning Bayesian networks for prior belief
نویسنده
چکیده
Recent reports have described that learning Bayesian networks are highly sensitive to the chosen equivalent sample size (ESS) in the Bayesian Dirichlet equivalence uniform (BDeu). This sensitivity often engenders some unstable or undesirable results. This paper describes some asymptotic analyses of BDeu to explain the reasons for the sensitivity and its effects. Furthermore, this paper presents a proposal for a robust learning score for ESS by eliminating the sensitive factors from the approximation of log-BDeu.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملBayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection
Incorporating prior knowledge into black-box classifiers is still much of an open problem. We propose a hybrid Bayesian methodology that consists in encoding prior knowledge in the form of a (Bayesian) belief network and then using this knowledge to estimate an informative prior for a black-box model (e.g. a multilayer perceptron). Two technical approaches are proposed for the transformation of...
متن کاملNon-Informative Dirichlet Score for learning Bayesian networks
Learning Bayesian networks is known to be highly sensitive to the chosen equivalent sample size (ESS) in the Bayesian Dirichlet equivalence uniform (BDeu). This sensitivity often engenders unstable or undesired results because the prior of BDeu does not represent ignorance of prior knowledge, but rather a user’s prior belief in the uniformity of the conditional distribution. This paper presents...
متن کاملPansombut, Tatdow. Advanced Learning Techniques for Improved Inference of Bayesian Belief Networks from Uncertain and High-dimensional Data. (under the Direction of Prof. Advanced Learning Techniques for Improved Inference of Bayesian Belief Networks from Uncertain and High-dimensional Data
PANSOMBUT, TATDOW. Advanced Learning Techniques for Improved Inference of Bayesian Belief Networks from Uncertain and High-dimensional Data. (Under the direction of Prof. Nagiza F. Samatova and Prof. Dennis R. Bahler.) A Bayesian Belief Network (BBN) is a powerful probabilistic learning model, it has been used successfully in many problem domains, such as medical diagnostics, computational biol...
متن کامل